5 research outputs found

    The Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes

    Get PDF
       In this paper, a capacitated vehicle routing problem is discussed which occurs in the context of glass waste collection. Supplies of several different product types (glass of different colors) are available at customer locations. The supplies have to be picked up at their locations and moved to a central depot at minimum cost. Different product types may be transported on the same vehicle, however, while being transported they must not be mixed. Technically this is enabled by a specific device, which allows for separating the capacity of each vehicle individually into a limited number of compartments where each compartment can accommodate one or several supplies of the same product type. For this problem, a model formulation and a variable neighborhood search algorithm for its solution are presented. The performance of the proposed heuristic is evaluated by means of extensive numerical experiments. Furthermore, the economic benefits of introducing compartments on the vehicles are investigated

    A Branch-and-Cut Algorithm for the Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes

    Get PDF
    Multi-compartment vehicle routing problems arise in a variety of problem settings in which different product types have to be transported separated from each other. In this paper, a problem variant which occurs in the context of glass waste recycling is considered. In this problem, a set of locations exists, each of which offering a number of containers for the collection of different types of glass waste (e.g. colorless, green, brown glass). In order to pick up the contents from the containers, a fleet of homogeneous disposal vehicles is available. Individually for each disposal vehicle, the capacity can be discretely separated into a limited number of compartments to which different glass waste types are assigned. The objective of the problem is to minimize the total distance to be travelled by the disposal vehicles.For solving this problem to optimality, a branch-and-cut algorithm has been developed and implemented. Extensive numerical experiments have been conducted in order to evaluate the algorithm and to gain insights into the problem structure. The corresponding results show that the algorithm is able to solve instances with up to 50 locations to optimality and that it reduces the computing time by 87% compared to instances from the literature. Additional experiments give managerial insights into the use of different variants of compartments with flexible sizes
    corecore